Establishing early warning systems by monitoring COVID-19 (SARS-CoV-2) in wastewater

COVID-19 in wastewater

Authors

  • Nebile Dağlıoğlu Cukurova University School of Medicine Department of Forensic Medicine, Adana, Turkey , Çukurova Üniversitesi Tıp Fakültesi Adli Tıp Anabilim Dalı, Adana https://orcid.org/0000-0003-3415-8159
  • Evşen Yavuz Güzel Cukurova University, Faculty of Fisheries, Department of Basic Science, Adana, Turkey , Çukurova Üniversitesi Su Ürünleri Temel Bilimleri Fakültesi, Adana
  • Aslı Atasoy Cukurova University, Institute of Addiction and Forensic Sciences, Adana , Çukurova Üniversitesi Tıp Fakültesi Adli Tıp Anabilim Dalı, Adana https://orcid.org/0000-0001-6901-7511

DOI:

https://doi.org/10.17986/blm.2020.v25i.1402

Keywords:

Wastewater, SARS-CoV-2, Covid-19, Pandemic, Wastewater based epidemiology

Abstract

Wastewater based epidemiology studies are a complementary approach used to measure and monitor the presence and prevalence of infectious diseases when clinical testing capacity is limited. It can also help with the detection of coronaviruses in wastewater and how they spread in the society. In the COVID-19 pandemic, SARS-Coronavirus-2 (SARS-CoV-2) is excreted with the feces of infected people and mixed with wastewater. Most people infected with viruses that infect enterically spread their feces and virus into their sewage systems both for the days or weeks before and after symptoms begin to appear. Through the detection of Covid-19 in wastewater, the number of asymptomatic people who do not represent any indication related to diseases but are carriers can be determined, and the total number of people infected in that society can be estimated. Therefore, an early warning system can be created, and it will be possible to take the necessary precautions before the second or third wave occurs.

Downloads

Download data is not yet available.

References

Randazzo W, Truchado P, Ferrando EC, Simon P, Allende A, Sanchez G. SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. medRxiv. 2020. https://doi.org/10.1101/2020.04.22.20075200. DOI: https://doi.org/10.1101/2020.04.22.20075200

Xing YH, Ni W, Wu Q, Li WJ, Li GJ, Wang W Di, et al. Prolonged viral shedding in feces of pediatric patients with coronavirus disease 2019. J Microbiol Immunol Infect. 2020. https://doi.org/10.1016/j.jmii.2020.03.021. DOI: https://doi.org/10.1016/j.jmii.2020.03.021

Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434–5. https://doi.org/10.1016/S2468-1253(20)30083-2. DOI: https://doi.org/10.1016/S2468-1253(20)30083-2

Cheung KS, Hung IF, Chan PP, Lung KC, Tso E, Liu R, et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from the Hong Kong Cohort and Systematic Review and Meta-analysis. Gastroenterology. 2020; https://doi.org/10.1053/j.gastro.2020.03.065. DOI: https://doi.org/10.1053/j.gastro.2020.03.065

Wang W, Xu Y, Gao R, Lu R, Han K, Wu G, et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA - J Am Med Assoc. 2020;3–4. https://doi.org/10.1001/jama.2020.3786. DOI: https://doi.org/10.1001/jama.2020.3786

Chen Y, Chen L, Deng Q, Zhang G, Wu K, Ni L, et al. The Presence of SARS-CoV-2 RNA in Feces of COVID-19 Patients. J Med Virol. 2020;0–2. https://doi.org/10.1002/jmv.25825. DOI: https://doi.org/10.1002/jmv.25825

Timm DA, Thomas W, Boileau TW, Williamson-Hughes PS, Slavin JL. Polydextrose and Soluble Corn Fiber Increase Five-Day Fecal Wet Weight in Healthy Men and Women. J Nutr. 2013;143(4):473–8. https://doi.org/10.3945/jn.112.170118. DOI: https://doi.org/10.3945/jn.112.170118

Hellmér M, Paxéus N, Magnius L, Enache L, Arnholm B, Johansson A, et al. Detection of pathogenic viruses in sewage provided early warnings of hepatitis A virus and norovirus outbreaks. Appl Environ Microbiol. 2014;80(21):6771–81. https://doi.org/10.1128/AEM.01981-14. DOI: https://doi.org/10.1128/AEM.01981-14

World Health Organization. Water , sanitation , hygiene and waste management for COVID-19. 2020;(March):1–9. https://doi.org/10.1056/NEJMoa2001191.7.

Gundy PM, Gerba CP, Pepper IL. Survival of Coronaviruses in Water and Wastewater. Food Environ Virol. 2009;1(1):10–4. https://doi.org/10.1007/s12560-008-9001-6. DOI: https://doi.org/10.1007/s12560-008-9001-6

Yang Z, Kasprzyk-Hordern B, Frost CG, Estrela P, Thomas K V. Community sewage sensors for monitoring public health. Environ Sci Technol. 2015;49(10):5845–6. https://doi.org/10.1021/acs.est.5b01434. DOI: https://doi.org/10.1021/acs.est.5b01434

Ort C, van Nuijs ALN, Berset J-D, Bijlsma L, Castiglioni S, Covaci A, et al. Spatial differences and temporal changes in illicit drug use in Europe quantified by wastewater analysis. Addiction. 2014 Aug;109(8):1338–52. https://doi.org/10.1111/add.12570. DOI: https://doi.org/10.1111/add.12570

Heijnen L, Medema G. Surveillance of influenza A and the pandemic influenza A (H1N1) 2009 in sewage and surface water in the Netherlands. J Water Health. 2011;9(3):434–42. https://doi.org/10.2166/wh.2011.019. DOI: https://doi.org/10.2166/wh.2011.019

Daglioglu N, Guzel EY, Kilercioglu S. Assessment of illicit drugs in wastewater and estimation of drugs of abuse in Adana Province, Turkey. Forensic Sci Int. 2019;294:132–9. https://doi.org/10.1016/j.forsciint.2018.11.012. DOI: https://doi.org/10.1016/j.forsciint.2018.11.012

Reid MJ, Langford KH, Mørland J, Thomas K V. Analysis and Interpretation of Specific Ethanol Metabolites, Ethyl Sulfate, and Ethyl Glucuronide in Sewage Effluent for the Quantitative Measurement of Regional Alcohol Consumption. Alcohol Clin Exp Res. 2011 Jun;35(9). https://doi.org/10.1111/j.1530-0277.2011.01505.x. DOI: https://doi.org/10.1111/j.1530-0277.2011.01505.x

Choi PM, Tscharke BJ, Donner E, O’Brien JW, Grant SC, Kaserzon SL, et al. Wastewater-based epidemiology biomarkers: Past, present and future. TrAC - Trends Anal Chem. 2018;105:453–69. https://doi.org/10.1016/j.trac.2018.06.004. DOI: https://doi.org/10.1016/j.trac.2018.06.004

Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, et al. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives. Environ Int. 2017;99:131–50. https://doi.org/10.1016/j.envint.2016.12.016. DOI: https://doi.org/10.1016/j.envint.2016.12.016

Yang Z, Xu G, Reboud J, Kasprzyk-Hordern B, Cooper JM. Monitoring Genetic Population Biomarkers for Wastewater-Based Epidemiology. Anal Chem. 2017;89(18):9941–5. https://doi.org/10.1021/acs.analchem.7b02257. DOI: https://doi.org/10.1021/acs.analchem.7b02257

Bosch A. Human enteric viruses in the water environment: A minireview. Int Microbiol. 1998;1(3):191–6. https://doi.org/10.2436/im.v1i3.39.

Noise S. How sewage could reveal true scale of coronavirus outbreak. 2020.

Daughton C. The international imperative to rapidly and inexpensively monitor community-wide Covid-19 infection status and trends. Sci Total Environ. 2020;726:138149. https://doi.org/10.1016/j.scitotenv.2020.138149. DOI: https://doi.org/10.1016/j.scitotenv.2020.138149

Lodder W, de Roda Husman AM. SARS-CoV-2 in wastewater: potential health risk, but also data source. Lancet Gastroenterol Hepatol. 2020;1253(20):30087. https://doi.org/10.1016/s2468-1253(20)30087-x. DOI: https://doi.org/10.1016/S2468-1253(20)30087-X

Medema G, Heijnen L, Elsinga G, Italiaander R, Medema G. Presence of SARS-Coronavirus-2 in sewage . Methods Sewage samples. 2020;2–6. https://doi.org/10.1101/2020.03.29.20045880. DOI: https://doi.org/10.1101/2020.03.29.20045880

Wu FQ, Xiao A, Zhang JB, Gu XQ, Lee WL, Hanage WP, et al. SARS-CoV-2 titers in wastewater are higher than expected from clinically confirmed cases. medRxiv. 2020;1–13. https://doi.org/10.1101/2020.04.05.20051540. DOI: https://doi.org/10.1101/2020.04.05.20051540

Wurtzer S, Marechal V, Jm M, Moulin L, Université S, Metis UMR, et al. Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases. medRxiv. 2020;(6):10–3. https://doi.org/10.1101/2020.04.12.20062679. DOI: https://doi.org/10.1101/2020.04.12.20062679

Ahmed W, Angel N, Edson J, Bibby K, Bivins A, O’Brien JW, et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci Total Environ. 2020;728(April):138764. https://doi.org/10.1016/j.scitotenv.2020.138764. DOI: https://doi.org/10.1016/j.scitotenv.2020.138764

Ort C. Swiss researchers see sewage as early warning sign for COVID flares [Internet]. 2020. Avaible from: https://www.reuters.com/article/us-health-coronavirus-sewage/swiss-researchers-see-sewage-as-early-warning-sign-for-covid-flares-idUSKBN22C1QD

Mao K, Zhang H, Yang Z. Can a Paper-Based Device Trace COVID-19 Sources with Wastewater-Based Epidemiology? Environ Sci Technol. 2020;0–2. https://doi.org/10.1021/acs.est.0c01174. DOI: https://doi.org/10.1021/acs.est.0c01174

John, Tara C. Coronavirus Cases [Internet]. 2020. Available from: https://edition.cnn.com/2020/04/01/europe/iceland-testing-coronavirus-intl/index.html

Published

2020-05-30

How to Cite

1.
Dağlıoğlu N, Yavuz Güzel E, Atasoy A. Establishing early warning systems by monitoring COVID-19 (SARS-CoV-2) in wastewater: COVID-19 in wastewater. Bull Leg Med [Internet]. 2020 May 30 [cited 2025 Sep. 6];25(COVID-19 Sp.I.):28-32. Available from: https://www.adlitipbulteni.com/index.php/atb/article/view/1402