COVID-19 Global Bir Çaba Olarak Yeni Hastalığı Anlamak

Yazarlar

  • Arzu Akçay Adalet Bakanlığı Adli Tıp Kurumu Başkanlığı, Morg İhtisas Dairesi, Patoloji, İstanbul - Adalet Bakanlığı Adli Tıp Kurumu Başkanlığı, Morg İhtisas Dairesi, Patoloji, İstanbul https://orcid.org/0000-0001-8343-1153
  • Kubilay Kınoğlu The Ministry Of Justice, İstanbul - Adalet Bakanlığı Adli Tıp Kurumu Başkanlığı, İstanbul https://orcid.org/0000-0002-3972-559X
  • Ayşe Özgün Şahin The Council of Forensic Medicine, İstanbul - Adli Tıp Kurumu Başkanlığı, İstanbul https://orcid.org/0000-0002-6149-8397

DOI:

https://doi.org/10.17986/blm.2020.v25i.1409

Anahtar Kelimeler:

COVID-19- Pandemi- Patogenez- Otopsi

Öz

Aralık 2019 tarihinde Çin’in Wuhan kentinde ortaya çıkan, yeni tip bir Korona virus olan SARS-Cov2’nin etkeni olduğu hastalık (COVID-19), tüm dünyayı etkisi altına alan bir pandemi ile insanlık tarihine damgasını vurmuş görünmektedir. 

Korona virus ailesinin en yeni üyesi olan SARS-CoV-2 gerek viral patogenezi, gerekse doku düzeyinde gösterdiği değişiklikler  açısından  özellikle SARS-CoV ile benzerlik gösterse de yepyeni bir hastalık tablosu ortaya koymaktadır. Virüsün sahip olduğu patojeniteyi kavrayabilmenin ilk koşulu  virüsün hareket ettiği ve hasar verdiği yolakları takip etmekten geçer. Basit bir ateş ve öksürük olarak başlayan bir durum, şok, multiorgan yetmezliği ve hatta en beklenmedik vakalarda bile ölüme sebep olabilir.  Böylesine bulaşıcı, ölümcül ve genele yayılmış bir zorluk ile karşılaşıldığı taktirde, eldeki bütü imkanlar en iyi şekilde değerlendirilmelidir.  COVID-19 isimli hastalığın durumunda ise bu çabalar birikmiş bir hale gelerek, evrensel bir şekle bürünmüştür. COVID-19 hastalığının patogenezinin anlaşılmasında, tıbbi ve bilimsel toplulukların otopsi disiplinin önemini hatırlamaları gerekmektedir. Az sayıda gerçekleştirilmiş olmalarına ragmen, COVID-19 otopsileri, literature oldukça önemli bilgiler kazandırmışlardır. Hastalığın, bağışıklık sisteminin ve patogenizin anlaşılmasında otopsinin rolü göz ardı edilmemeli, tam tersine, daha çok gelişitirilmeli ve el üstünde tutulmalıdır. Aynı düşünüş tarzı, gerek COVID-19 gerekse gelecekteki pandemiler perspektifinde oturtulmalıdır.

Referanslar

Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virology. 2020;92(4):418-23. doi: 10.1002/jmv.25681.

Fung SY, Yuen KS, Ye ZW, Chan CP, Jin DY. A tug-of-war between severe acute respiratory syndrome coronavirus 2 and host antiviral defence: lessons from other pathogenic viruses. Emerging Microbes Infections. 2020;9(1):558-70. doi: 10.1080/22221751.2020.1736644.

Cui J, Li F, Shi ZL. Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology. 2019;17(3):181-92. doi: 10.1038/s41579-018-0118-9.

Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, et al. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020.

Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacology & therapeutics. 2010;128(1):119-28. doi: 10.1016/j.pharmthera.2010.06.003.

Muus C, Luecken MD, Eraslan G, Waghray A, Heimberg G, Sikkema L, et al. Integrated analyses of single-cell atlases reveal age, gender, and smoking status associations with cell type-specific expression of mediators of SARS-CoV-2 viral entry and highlights inflammatory programs in putative target cells. bioRxiv. 2020:2020.04.19.049254. doi: https://doi.org/10.1101/2020.04.19.049254

Chu H, Chan JF-W, Yuen TT-T, Shuai H, Yuan S, Wang Y, et al. Comparative tropism, replication kinetics, and cell damage profiling of SARS-CoV-2 and SARS-CoV with implications for clinical manifestations, transmissibility, and laboratory studies of COVID-19: an observational study. Lancet Microbe. 2020. DOI:10.1016/S2666-5247(20)30004-5

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell. 2020. DOI: 10.1016/j.cell.2020.03.045

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271-80.e8. DOI: 10.1016/j.cell.2020.02.052

Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virology. 2015;89(4):1954-64. doi: 10.1128/JVI.02615-14.

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi: 10.1016/S0140-6736(20)30183-5.

Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA. 2020. doi: 10.1001/jama.2020.6775.

Matthay MA, Zemans RL. The acute respiratory distress syndrome: pathogenesis and treatment. Annual Review Pathol. 2011;6:147-63. DOI: 10.1146/annurev-pathol-011110-130158

Tian S, Hu W, Niu L, Liu H, Xu H, Xiao SY. Pulmonary Pathology of Early-Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in Two Patients With Lung Cancer. Journal of thoracic oncology: official publication of the International Association for the Study of Lung Cancer. 2020;15(5):700-4. doi: 10.1016/j.jtho.2020.02.010.

Carsana L, Sonzogni A, Nasr A, Rossi R, Pellegrinelli A, Zerbi P, et al. Pulmonary post-mortem findings in a large series of COVID-19 cases from Northern Italy. medRxiv. 2020:2020.04.19.20054262. doi: https://doi.org/10.1101/2020.04.19.20054262

Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417-8. doi: 10.1016/S0140-6736(20)30937-5.

Barton LM, Duval EJ, Stroberg E, Ghosh S, Mukhopadhyay S. COVID-19 Autopsies, Oklahoma, USA. Am J Clinical Pathol. 2020;153(6):725-33. doi: 10.1093/ajcp/aqaa062.

Leisman DE, Deutschman CS, Legrand M. Facing COVID-19 in the ICU: vascular dysfunction, thrombosis, and dysregulated inflammation. Intensive Care Med. 2020:1-4. DOI: 10.1007/s00134-020-06059-6

Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nature rRviews Immunology. 2020:1-8. doi: 10.1038/s41577-020-0331-4.

Han S, Mallampalli RK. The acute respiratory distress syndrome: from mechanism to translation. J Immunology (Baltimore, Md : 1950). 2015;194(3):855-60. doi: 10.4049/jimmunol.1402513.

Huang X, Xiu H, Zhang S, Zhang G. The Role of Macrophages in the Pathogenesis of ALI/ARDS. Mediators Inflammation. 2018;2018:1264913. doi: 10.1155/2018/1264913.

Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome. Disease markers. 2016;2016:3501373. doi: 10.1155/2016/3501373.

Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration; Int Review Thoracic Diseases. 2017;93(3):212-25. doi: 10.1159/000453002.

Pfeiler S, Stark K, Massberg S, Engelmann B. Propagation of thrombosis by neutrophils and extracellular nucleosome networks. Haematologica. 2017;102(2):206-13. doi: 10.3324/haematol.2016.142471.

Haller O, Kochs G, Weber F. The interferon response circuit: induction and suppression by pathogenic viruses. Virology. 2006;344(1):119-30. doi: 10.1016/j.virol.2005.09.024.

Schoggins JW. Interferon-stimulated genes: roles in viral pathogenesis. Current opinion in virology. 2014;6:40-6. doi: 10.1016/j.coviro.2014.03.006.

Kochi AN, Tagliari AP, Forleo GB, Fassini GM, Tondo C. Cardiac and arrhythmic complications in patients with COVID-19. J Cardiovascular Electrophysiology. 2020;31(5):1003-8. DOI: 10.1111/jce.14479

Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/jama.2020.2648.

Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-62. doi: 10.1016/S0140-6736(20)30566-3.

Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020;323(11):1061-9. doi: 10.1001/jama.2020.1585.

Lau ST, Yu WC, Mok NS, Tsui PT, Tong WL, Cheng SW. Tachycardia amongst subjects recovering from severe acute respiratory syndrome (SARS). Int J Cardiology. 2005;100(1):167-9. doi: 10.1016/j.ijcard.2004.06.022.

Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle East respiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2014;29:301-6. doi: 10.1016/j.ijid.2014.09.003.

Update: Severe respiratory illness associated with Middle East Respiratory Syndrome Coronavirus (MERS-CoV)--worldwide, 2012-2013. MMWR Morbidity and mortality weekly report. 2013;62(23):480-3.

Sellers SA, Hagan RS, Hayden FG, Fischer WA, 2nd. The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza and other respiratory viruses. 2017;11(5):372-93. doi: 10.1111/irv.12470.

Yu CM, Wong RS, Wu EB, Kong SL, Wong J, Yip GW, et al. Cardiovascular complications of severe acute respiratory syndrome. Postgraduate Med J. 2006;82(964):140-4. doi: 10.1136/pgmj.2005.037515.

Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respiratory Med. 2020;8(5):475-81. doi: 10.1016/S2213-2600(20)30079-5.

Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. 2020;45(3):230-2. doi: 10.1007/s00059-020-04909-z.

Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in coronavirus disease 2019 patients: A systematic review and meta-analysis. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020;94:91-5. doi: 10.1016/j.ijid.2020.03.017.

Bradley BT, Maioli H, Johnston R, Chaudhry I, Fink SL, Xu H, et al. Histopathology and Ultrastructural Findings of Fatal COVID-19 Infections. medRxiv. 2020:2020.04.17.20058545. doi: https://doi.org/10.1101/2020.04.17.20058545

Hanley B, Lucas SB, Youd E, Swift B, Osborn M. Autopsy in suspected COVID-19 cases. J Clinical Pathol. 2020;73(5):239-42. doi: 10.1136/jclinpath-2020-206522.

Zeng JH, Liu YX, Yuan J, Wang FX, Wu WB, Li JX, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection. 2020:1-5. doi: 10.1007/s15010-020-01424-5.

Stanciu AE. Cytokines in heart failure. Advances Clinical Chemistry. 2019;93:63-113. doi: 10.1016/bs.acc.2019.07.002.

Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ 2020;368:m1091. doi: 10.1136/bmj.m1091.

Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Molecular Cellular Cardiol. 2020. doi: 10.1016/j.yjmcc.2020.04.031.

Murthy S, Gomersall CD, Fowler RA. Care for Critically Ill Patients With COVID-19. JAMA. 2020. doi: 10.1001/jama.2020.3633.

Alhogbani T. Acute myocarditis associated with novel Middle east respiratory syndrome coronavirus. Ann Saudi Med. 2016;36(1):78-80. doi: 10.5144/0256-4947.2016.78.

Pan SF, Zhang HY, Li CS, Wang C. [Cardiac arrest in severe acute respiratory syndrome: analysis of 15 cases]. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese J Tuberculosis Respiratory Diseases. 2003;26(10):602-5.

Nguyen JL, Yang W, Ito K, Matte TD, Shaman J, Kinney PL. Seasonal Influenza Infections and Cardiovascular Disease Mortality. JAMA cardiology. 2016;1(3):274-81. doi: 10.1001/jamacardio.2016.0433.

Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the COVID-19 Pandemic. J Am College Cardiol. 2020;75(18):2352-71. doi: 10.1016/j.jacc.2020.03.031.

Welt FGP, Shah PB, Aronow HD, Bortnick AE, Henry TD, Sherwood MW, et al. Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From the ACC's Interventional Council and SCAI. J Am College Cardiol. 2020;75(18):2372-5. doi: 10.1016/j.jacc.2020.03.021.

Bansal M. Cardiovascular disease and COVID-19. Diabetes & metabolic syndrome. 2020;14(3):247-50. doi: 10.1016/j.dsx.2020.03.013.

Tersalvi G, Vicenzi M, Calabretta D, Biasco L, Pedrazzini G, Winterton D. Elevated Troponin in Patients With Coronavirus Disease 2019: Possible Mechanisms. J Cardiac Failure. 2020. doi: 10.1016/j.cardfail.2020.04.009.

Mirzaei H, Ferns GA, Avan A, Mobarhan MG. Cytokines and MicroRNA in Coronary Artery Disease. Advances in clinical chemistry. 2017;82:47-70. doi: 10.1016/bs.acc.2017.06.004.

Teijaro JR, Walsh KB, Cahalan S, Fremgen DM, Roberts E, Scott F, et al. Endothelial cells are central orchestrators of cytokine amplification during influenza virus infection. Cell. 2011;146(6):980-91. doi: 10.1016/j.cell.2011.08.015.

Zheng YY, Ma YT, Zhang JY, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259-60. doi: 10.1038/s41569-020-0360-5.

Chang LY, Lu CY, Shao PL, Lee PI, Lin MT, Fan TY, et al. Viral infections associated with Kawasaki disease. Journal of the Formosan Medical Association = Taiwan yi zhi. 2014;113(3):148-54. doi: 10.1016/j.jfma.2013.12.008.

Shirato K, Imada Y, Kawase M, Nakagaki K, Matsuyama S, Taguchi F. Possible involvement of infection with human coronavirus 229E, but not NL63, in Kawasaki disease. J Med Virology. 2014;86(12):2146-53. doi: 10.1002/jmv.23950.

Giray T, Biçer S, Küçük Ö, Çöl D, Yalvaç Z, Gürol Y, et al. Four cases with Kawasaki disease and viral infection: aetiology or association. Le infezioni in medicina. 2016;24(4):340-4.

Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020:1-3. DOI: 10.1007/s00134-020-06026-1

Danzi GB, Loffi M, Galeazzi G, Gherbesi E. Acute pulmonary embolism and COVID-19 pneumonia: a random association? European Heart J. 2020. doi: 10.1093/eurheartj/ehaa254

Cellina M, Oliva G. Acute pulmonary embolism in a patient with COVID-19 pneumonia. Diagnostic Interventional Imaging. 2020;101(5):325-6. doi: 10.1016/j.diii.2020.04.001.

Ratliff NB, Estes ML, McMahon JT, Myles JL. Chloroquine-induced cardiomyopathy. Archives Pathol Lab Med. 1988;112(6):578.

Siqueira-Batista R, Ramos Júnior AN, Pessanha BS, Sforza-de-Almeida MP, Potsch DF. Chloroquine and cardiac arrhythmia: case report. East African Med J. 1998;75(2):117-9.

Capel RA, Herring N, Kalla M, Yavari A, Mirams GR, Douglas G, et al. Hydroxychloroquine reduces heart rate by modulating the hyperpolarization-activated current If: Novel electrophysiological insights and therapeutic potential. Heart rhythm. 2015;12(10):2186-94. doi: 10.1016/j.hrthm.2015.05.027.

Sapp JL, Alqarawi W, MacIntyre CJ, Tadros R, Steinberg C, Roberts JD, et al. Guidance on Minimizing Risk of Drug-Induced Ventricular Arrhythmia During Treatment of COVID-19: A Statement from the Canadian Heart Rhythm Society. Canadian J Cardiol. 2020. DOI: 10.1016/j.cjca.2020.04.003

DeCarolis DD, Westanmo AD, Chen YC, Boese AL, Walquist MA, Rector TS. Evaluation of a Potential Interaction Between New Regimens to Treat Hepatitis C and Warfarin. The Ann Pharmacotherapy. 2016;50(11):909-17. DOI: 10.1177/1060028016660325

Page RL, 2nd, O'Bryant CL, Cheng D, Dow TJ, Ky B, Stein CM, et al. Drugs That May Cause or Exacerbate Heart Failure: A Scientific Statement From the American Heart Association. Circulation. 2016;134(6):e32-69. doi: 10.1161/CIR.0000000000000426.

Wright EJ, Brew BJ, Wesselingh SL. Pathogenesis and diagnosis of viral infections of the nervous system. Neurologic Clinics. 2008;26(3):617-33, vii. doi: 10.1016/j.ncl.2008.03.006.

Wu A, Peng Y, Huang B, Ding X, Wang X, Niu P, et al. Genome Composition and Divergence of the Novel Coronavirus (2019-nCoV) Originating in China. Cell host & microbe. 2020;27(3):325-8. doi: 10.1016/j.chom.2020.02.001.

Turner AJ, Hiscox JA, Hooper NM. ACE2: from vasopeptidase to SARS virus receptor. Trends Pharmacological Sci. 2004;25(6):291-4. doi: 10.1016/j.tips.2004.04.001.

Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan, China. JAMA neurology. 2020. doi: 10.1001/jamaneurol.2020.1127.

Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395(10223):507-13. doi: 10.1016/S0140-6736(20)30211-7.

Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, et al. Coronavirus Infections in the Central Nervous System and Respiratory Tract Show Distinct Features in Hospitalized Children. Intervirology. 2016;59(3):163-9. doi: 10.1159/000453066.

Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple organ infection and the pathogenesis of SARS. J Experimental Med. 2005;202(3):415-24. doi: 10.1084/jem.20050828.

State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS currents. 2013;5. DOI: 10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8.

Wu Y, Xu X, Chen Z, Duan J, Hashimoto K, Yang L, et al. Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.03.031.

Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS chemical neuroscience. 2020;11(7):995-8. doi: 10.1021/acschemneuro.0c00122.

Zhou L, Zhang M, Wang J, Gao J. Sars-Cov-2: Underestimated damage to nervous system. Travel medicine and infectious disease. 2020:101642. doi: 10.1016/j.tmaid.2020.101642.

Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases. 2020;94:55-8. doi: 10.1016/j.ijid.2020.03.062.

Duong L, Xu P, Liu A. Meningoencephalitis without respiratory failure in a young female patient with COVID-19 infection in Downtown Los Angeles, early April 2020. Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.04.024.

Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. Axonal Transport Enables Neuron-to-Neuron Propagation of Human Coronavirus OC43. J Virology. 2018;92(17). doi: 10.1128/JVI.00404-18.

Conde Cardona G, Quintana Pájaro LD, Quintero Marzola ID, Ramos Villegas Y, Moscote Salazar LR. Neurotropism of SARS-CoV 2: Mechanisms and manifestations. J Neurological Sci. 2020;412:116824. doi: 10.1016/j.jns.2020.116824.

Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. J Med Virology. 2020. doi: 10.1002/jmv.25728. doi: 10.1021/acschemneuro.0c00201.

Das G, Mukherjee N, Ghosh S. Neurological Insights of COVID-19 Pandemic. ACS chemical neuroscience. 2020;11(9):1206-9. doi: 10.1021/acschemneuro.0c00201.

Esposito G, Pesce M, Seguella L, Sanseverino W, Lu J, Sarnelli G. Can the enteric nervous system be an alternative entrance door in SARS-CoV2 neuroinvasion? Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.04.060.

Abdennour L, Zeghal C, Dème M, Puybasset L. [Interaction brain-lungs]. Annales francaises d'anesthesie et de reanimation. 2012;31(6):e101-7. doi: 10.1016/j.annfar.2012.04.013.

Li Y, Fu L, Gonzales DM, Lavi E. Coronavirus neurovirulence correlates with the ability of the virus to induce proinflammatory cytokine signals from astrocytes and microglia. J Virology. 2004;78(7):3398-406. doi: 10.1128/jvi.78.7.3398-3406.2004.

Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19-associated Acute Hemorrhagic Necrotizing Encephalopathy: CT and MRI Features. Radiology. 2020:201187. doi: 10.1148/radiol.2020201187.

Miller AJ, Arnold AC. The renin-angiotensin system in cardiovascular autonomic control: recent developments and clinical implications. Clinical autonomic research : official journal of the Clinical Autonomic Research Society. 2019;29(2):231-43. doi: 10.1007/s10286-018-0572-5.

Wüthrich C, Batson S, Koralnik IJ. Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System. J Neuropathology Experimental Neurology. 2015;74(8):791-803. doi: 10.1097/NEN.0000000000000218.

Yayınlanmış

30.05.2020

Nasıl Atıf Yapılır

1.
Akçay A, Kınoğlu K, Özgün Şahin A. COVID-19 Global Bir Çaba Olarak Yeni Hastalığı Anlamak . Bull Leg Med [Internet]. 30 Mayıs 2020 [a.yer 10 Aralık 2025];25(COVID-19 Sp.I.):1-10. Erişim adresi: https://www.adlitipbulteni.com/index.php/atb/article/view/1409