Öz
Adli bilimler alanında en yaygın kullanılan epigenetik mekanizmalardan biri DNA metilasyonudur. Günümüzde insanlarda kronolojik yaşı tahmin etmek için çok sayıda CpG bölgesinin yaşla ilişkili metilasyon analizleri gerçekleştirilmektedir.
Olay yerinden elde edilen biyolojik örneklerde yaş tahminini belirlemek hedeflenmiştir. Yapılan bu araştırma, aynı zamanda yaş tahmini çalışmaları için zemin oluşturacaktır.
Adli bir suç soruşturması safhasında tespit edilebilecek biyolojik örneklerden yaş tahmini yapılabilmektedir. Bu konuda PubMed, Scopus ve Google Scholar veritabanlarında, adli yaş tahminiyle ilgili detaylı çalışma yapılmıştır.
Yaş ile korelasyon sağlaması bakımından CpG bölgeleri, değişen yaş kategorilerinde kadın ve erkek gönüllüden alınan biyolojik örneklerde Bisülfit Dönüşüm yöntemi ile çalışılmıştır. Biyolojik yaş ile kronolojik yaş gruplarında tahmin edilen yaşın Ortalama Mutlak Sapma (MAD) veya Ortalama Mutlak Hata (MAE) değerleri tespit edilmiştir.
Yapay zekâ ile yapılan yaş tahminlerinin kan örneklerinde ortalama MAD değeri 3 ila 5 yıl arasında bulunmuştur. Ancak dokulara göre yaşa bağlılıklar tespit edilmiş, doğruluklarının kan örneklerine göre daha düşük olduğu gözlenmiştir. Sonuç olarak adli uygulamalarda, olay yerinde elde edilen biyolojik materyalin türüne göre yaş tahmini yapılmalıdır.
Referanslar
Deans C, KAM. What do you mean, “epigenetic” Genetics. 2015;199(4):887-896. https://doi.org/10.1534/genetics.114.173492
Tezel A, Arıkan Çevik M, Yüce Z. Non-mendelian inheritance: genomic imprinting. Marmara Medical Journal. 1996;9(2):85-88.
Ehrlich M, Gama-Sosa MA, Huang LH, Midgett RM, Kuo KC, Mccune RA, ve ark. Amount and distribution of 5-methylcytosine in human DNA from different types of tissues of cells. Nucleic Acids Res. 1982;10(8):2709-21.https://doi.org/ 10.1093/nar/10.8.2709
Maulani C, Auerkari Eİ. Age estimation using DNA methylation technique in forensics: a systematic review. Egyptian Journal Of Forensic Sciences. 2020;10: 1-15. https://doi.org/10.1186/s41935-020-00214-2
Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, ve ark. Physical activity and global genomic DNA methylation in a cancer-free population. Epigenetics. 2011;6(3):293-299. https://doi.org/10.4161/epi.6.3.14378
Wu X, WC, Lin F, Huang Q, JZ, Gao H, ve ark. DNA methylation profile is a quantitative measure of biological aging in children. Aging (Albany Ny). 2019;11(22):10031-10051. https://doi.org/10.18632/aging.102399.
Mcewen LM, O’Donnell KJ, Mcgill MG, Edgar RD, Jones MJ, Macısaac JL, ve ark. The pedbe clock accurately estimates DNA methylation age in pediatric buccal cells. Proc Natl Acad Sci U S A. 2020;117(38):23329-23335.https://doi.org/10.1073/pnas.1820843116.
Newediuk L, Richardson ES, Bohart AM, Roberto-Charron A, Garroway CJ, & Jones MJ. Designing epigenetic clocks for wildlife research. Molecular Ecology Resources. 2025;e14120. https://doi.org/10.1111/1755-0998.14120
Srour L, Bejaoui Y, She J, Alam T, & El Hajj N. Deep aging clocks: AI-powered strategies for biological age estimation. Ageing Research Reviews. 2025;102889. https://doi.org/10.1016/j.arr.2025.102889
Slieker RC, Iterson MV, Luijk R, Beekman M, Zhernakova DV, Moed MH, ve ark. Age-related accrual of methylomic variability is linked to fundamental ageing mechanisms. Genome Biology. 2016;17(191). https://doi.org/10.1186/s13059-016-1053-6
Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, ve ark. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci USA. 2012;109(26):10522-7. https://doi.org/ 10.1073/pnas.1120658109
Beerman İ, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, ve ark. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell. 2013;12(4):413-25. https://doi.org/ 10.1016/j.stem.2013.01.017
Carlsen L, Holländer O, Danzer MF, Vennemann M, CA. DNA methylation-based age estimation for adults and minors: considering sex-specific differences and non-linear correlations. İnt J Legal Med. 2023;137(3):635-643. https://doi.org/10.1007/s00414-023-02967-6
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. Genome Biology. 2013;14:R115. https://doi.org/10.1186/gb-2013-14-10-r115
Ibáñez de Opakua A, Conde R, de Diego A, Bizkarguenaga M, Embade N, Lu SC., ... & Millet O. Metabolomic-based aging clocks. npj Metabolic Health and Disease. 2025;3(1), 35. https://doi.org/10.1038/s44324-025-00078
Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, ve ark. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell. 2013;49(2):359-367. https://doi.org/10.1016/j.molcel.2012.10.016
Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, ve ark. An epigenetic biomarker of aging for lifespan and healthspan. Aging (albany NY). 2018;10(4):573 https://doi.org/10.18632/aging.101414.
Snir S. Epigenetic pacemaker: closed form algebraic solutions. BMC genomics. 2020;21:1-11. https://doi.org/10.1186/s12864-020-6606-0
Zhang Q, Vallerga CL, Walker RM, Lin T, Henders AK, Montgomery GW, ve ark. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Medicine. 2019;11:54. https://doi.org/10.1186/s13073-019-0667-1
Stelvio . Estimage [internet]. Estimage; 2025 [Erişim tarihi: 05.05.2025]. Erişim adresi: https://public.estimage.com/about-us
Weidner CI, Lin Q, Koch CM, Eisele L, Beier F, Ziegler P, Bauerschlag DO, Jöckel KH, Erbel R, Mühleisen TW, Zenke M, Brümmendorf TH, Wagner, W. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome biology. 2014;15:1-12. https://doi.org/10.1186/gb-2014-15-2-r24
Zubakov D, Liu F, Kokmeijer İ, Choi Y, Meurs JBV, Ijcken WFV, ve ark. Human age estimation from blood using mrna, DNA methylation, DNA rearrangement, and telomere length. Forensic Science İnternational: Genetics. 2016;24:33-43. https://doi.org/10.1016/j.fsigen.2016.05.014
Wochna K, Bonikowski R, Śmigielski J, JB. Aspartic acid racemization of root dentin used for dental age estimation in a polish population sample. Forensic Sci Med Pathol.. 2018;14(3):285–294. https://doi.org/10.1007/s12024-018-9984-8
Freire-Aradas A, Phillips C, Lareu MV. Forensic individual age estimation with DNA: from initial approaches to methylation tests. Forensic Sci Rev. 2017;29(2):121-144. https://doi.org/1042-7201/29-2/July 2017/121
Unnikrishnan A, Jackson WMFJ, Porter JDWH, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther. 2019;195:172-185. https://doi.org/10.1016/j.pharmthera.2018.11.001
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering forensic evidence: a path to age estimation through DNA methylation. İnt J Mol .2024;25(9):4917. https://doi.org/10.3390/ijms25094917.
Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A, Sandoval J. Methods for analysis of specific DNA methylation status. Methods. 2021;187:3-12. https://doi.org/10.1016/j.ymeth.2020.06.021
Leontiou CA, Hadjidaniel MD, Mina P, Antoniou P, Ioannides M, Patsalis PC. Bisulfite conversion of DNA: performance comparison of different kits and methylation quantitation of epigenetic biomarkers that have the potential to be used in non-ınvasive prenatal testing. Plos One. 2015;10(8):0135058. https://doi.org/10.1371/journal.pone.0135058
Bekaert B, Kamalandua A, Zapico S, Voorde WVD, Decorte R. A selective set of DNA -methylation markers for age determination of blood, teeth and buccal samples. Forensic Science İnternational: Genetics Supplement Series. 2015;5:144-145. https://doi.org/10.1080/15592294.2015.1080413
Bekaert B, Kamalandua A, Zapico SC, Voorde WVD, Decorte R. Improved age determination of blood and teeth samples using a selected set of DNA methylation markers. Epigenetics. 2015;10(10):922-30. https://doi.org/10.1080/15592294.2015
MRR1, Kampmann M, NM, Tfelt-Hansen J, Børsti̇ng C, Pereira V. Prediction of chronological age and its applications in forensic casework: methods, current practices, and future perspectives. Forensic Sci Res. 2023;8(2):85-97. https://doi.org/10.1093/fsr/owad021
Freire-Aradas A, Pośpiech E, Aliferi A, Girón-Santamaría L, Mosquera-Miguel A, Pisarek A, ve ark. A comparison of forensic age prediction models using data from four DNA methylation technologies. Front Genet. 2020;19(11):932. https://doi.org/10.3389/fgene.2020.00932
Suchiman HED, Slieker, RC, Kremer D, Slagboom PE, Heijmans BT, Tobi EW. Design, measurement and processing of region-specific DNA methylation assays: the mass spectrometry-based method EpiTYPER. Frontiers in genetics 2015;6: 287 https://doi.org/10.3389/fgene.2015.00287
Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. Plos One . 2021;16(10):0257521. https://doi.org/10.1371/journal.pone.0257521
Yuen ZWS, Shanmuganandam S, Stanley M, Jiang S, Hein N, Daniel R, vd. Profiling age and body fluid DNA methylation markers using nanopore adaptive sampling. Forensic Sci Int Genet. 2024;71:103048. https://doi.org/10.1016/j.fsigen.2024.103048
Barros-Silva D, Marques CJ, Henrique R, Jerónimo C. Profiling DNA methylation based on next-generation sequencing approaches: new insights and clinical applications. Genes 2018;9(9): 429 https://doi.org/10.3390/genes9090429
Vidaki A, López CD, Carnero-Montoro E, Ralf A, Ward K, Spector T, ve ark. Epigenetic discrimination of identical twins from blood under the forensic scenario. Forensic Sci İnt Genet. 2017;31:67-80. https://doi.org/10.1016/j.fsigen.2017.07.014
Vidaki A, Kalamara V, Carnero-Montoro E, Spector TD, Bell JT, Kayser M. Investigating the Epigenetic Discrimination of Identical Twins Using Buccal Swabs, Saliva, and Cigarette Butts in the Forensic Setting. Genes 2018;9:252. https://doi.org/10.3390/genes9050252
Vidaki A, Giangasparo F, Syndercombe Court D. Discovery of potential DNA methylation markers for forensic tissue identification using bisulphite pyrosequencing. Electrophoresis 2016;37: 2767–2779. https://doi.org/10.1002/elps.201600261
Lee HY, Jung S, Lee EH, Yang Wİ, KS. DNA methylation profiling for a confirmatory test for blood, saliva, semen, vaginal fluid and menstrual blood. Forensic Sci İnt Genet. 2016;24:75-82. https://doi.org/10.1016/j.fsigen.2016.06.007
Thong Z, Tan JYY, Loo ES, Phua YW, Chan XLS, Syn CK. Artificial neural network, predictor variables and sensitivity threshold for DNA methylation-based age prediction using blood samples. Sci. Rep. 2021;1:744. https://doi.org/10.1038/s41598-021-81556-2
Garagnani P, Bacalini MG, Pirazzini C, Gori D, Giuliani C, Mari D, Di Blasio AM, Gentilini D, Vitale G, CollinoS, et al. Methylation of ELOVL2 gene as a new epigenetic marker of age. Aging Cell 2012;11:1132–1134. https://doi.org/10.1111/acel.12005
Aanes H, Bleka Ø, Dahlberg PS, Carm KT, Lehtimäki T, Raitakari O, et al. A new blood based epigenetic age predictor for adolescents and young adults. Scientific reports, 2023;13(1): 2303. https://doi.org/10.1038/s41598-023-29381-7
Zbiec ́-Piekarska R, Spólnicka M, Kupiec T, Makowska Z, Spas A Parys Proszek A, Kucharczyk K, Płoski R, Branicki W. Examination of DNA methylation status of the ELOVL2 marker may be useful for human age prediction in forensic science. Forensic Sci. Int. Genet. 2015; 14: 161–167. https://doi.org/10.1016/j.fsigen.2014.10.002
Zbiec’-Piekarska R, Spólnicka M, Kupiec T, Makowska Z, Spas A Parys Proszek A, Kucharczyk K, Płoski R, Branicki W. Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 2015;17: 173–179. https://doi.org/ 10.1016/j.fsigen.2015.05.001
Yang F, Qian J, Qu H, Ji Z, Li J, Hu W, Cheng F, Fang X, Yan J. DNA methylation-based age prediction with bloodstains using pyrosequencing and random forest regression. Electrophoresis. 2023;44: 835–844. https://doi.org/10.1002/elps.202200250
Sukawutthiya P, Sathirapatya T, Vongpaisarnsin K. A minimal number CpGs of ELOVL2 gene for a chronological age estimation using pyrosequencing. Forensic Sci. Int. 2021;318:110631 https://doi.org/ 10.1016/j.forsciint.2020.110631.
Jung SE, Lim SM, Hong SR, Lee EH, Shin KJ, Lee HY. DNA methylation of the ELOVL2, FHL2, KLF14, C1orf132/MIR29B2C, and TRIM59 genes for age prediction from blood, saliva, and buccal swab samples. Forensic Sci. Int. Genet. 2019;38: 1–8. https://doi.org/ 10.1016/j.fsigen.2018.09.010
Pan, C, Yi S, Xiao C, Huang Y, Chen X, Huang D. The evaluation of seven age-related CpGs for forensic purpose in blood from Chinese Han population. Forensic Sci. Int. Genet. 2020;46:102251. https://doi.org/10.1016/j.fsigen.2020.102251
Onofri M, Delicati A, Marcante B, Carlini L, Alessandrini F, Tozzo P, Carnevali E. Forensic Age Estimation through a DNA Methylation-Based Age Prediction Model in the Italian Population: A Pilot Study. Int. J. Mol. Sci. 2023;24: 5381. https://doi.org/10.3390/ijms24065381
Feng L, Peng F, Li S, Jiang L, Sun H, Ji A, Zeng C, Li C, Liu F. Systematic feature selection improves accuracy of methylation-based forensic age estimation in Han Chinese males. Forensic Sci. Int. Genet. 2018;35: 38–45. https://doi.org/10.1016/j.fsigen.2018.03.009
Filoglu G, Sımsek SZ, Ersoy G, Can K, Bulbul O. Epigenetic-based age prediction in blood samples: model development. Criminalistics; Pathology/Biology. 2024;1–11. https://doi.org/10.1111/1556-4029.15478
Grignani P, Bertoglio B, Monti MC, Cuoghi Costantini R, Ricci U, Onofri M, et a. Age estimation of burnt human remains through DNA methylation analysis. International Journal of Legal Medicine. 2024;1-11. https://doi.org/10.1007/s00414-024-03320-1
Bocklandt S, Lin W, Sehl ME, Sánchez FJ, Sinsheimer JS, Horvath S, Vilain E. Epigenetic predictor of age. PloS one 2011;6(6): e14821 https://doi.org/10.1371/journal.pone.0014821
Schwender K, Hollander O, Klopfleisch S, Eveslage M, Danzer M.F, Pfeiffer H, Vennemann M. Development of two age estimation models for buccal swab samples based on 3 CpG sites analyzed with pyrosequencing and minisequencing. Forensic Sci. Int. Genet. 2021;53: 102521. https://doi.org/10.1016/j.fsigen.2021.102521
Eipel M, Mayer F, Arent T, Ferreira MR, Birkhofer C, Gerstenmaier U, Costa IG, Ritz-Timme S, Wagner W. Epigenetic age predictions based on buccal swabs are more precise in combination with cell type-specific DNA methylation signatures. Aging 2016;8: 1034–1048. https://doi.org/10.18632/aging.100972
Ambroa-Conde A, Girón-Santamaría L, Mosquera-Miguel A, Phillips C, Casares de Cal MA, Gómez-Tato A, Álvarez-Dios J, de la Puente M, Ruiz-Ramírez J, Lareu MV, et al. Epigenetic age estimation in saliva and in buccal cells. Forensic Sci. Int. Genet. 2022; 61: 102770. https://doi.org/10.1016/j.fsigen.2022.102770
Lee MH, Hwang JH, Seong KM, Ahn JJ, Kim SJ, Hwang SY, Lim SK. Application of droplet digital PCR method for DNA methylation-based age prediction from saliva. Legal Medicine. 2022;54: 101992. https://doi.org/10.1016/j.legalmed.2021.101992
Lee HY, Jung SE, Oh YN, Choi A, Yang WI, Shin KJ. Epigenetic age signatures in the forensically relevant body fluid of semen: A preliminary study. Forensic Sci. Int. Genet. 2015;19: 28–34. https://doi.org/10.1016/j.fsigen.2015.05.014.
Pisarek A, Pos piech E, Heidegger A, Xavier C, Papiez A, Piniewska-Róg D, Kalamara V, Potabattula R, Bochenek M, Sikora-Polaczek M, et al. Epigenetic age prediction in semen–marker selection and model development. Aging. 2021;13:19145–19164. https://doi.org/10.18632/aging.203399
Er S, Abik Z, Ersoy G, Filoglu G, Ozkara H, Bulbul O. A semen-specific deoxyribonucleic acid methylation model for epigenetic age estimation and its robustness under environmental challenges. Electrophoresis. 2024;45:1820–1833. https://doi.org/10.1002/elps.202400054
Abik Z. Çevresel koşullara maruz bırakılan semen lekelerinde DNA metilasyonu ile yaş tahmini [Yüksek lisans tezi]. İstanbul: İstanbul Üniversitesi-Cerrahpaşa; 2024.
Giuliani C, Cilli E, Bacalini MG, Pirazzini C, Sazzini M, Gruppioni G, ve ark. Inferring chronological age from DNA methylation patterns of human teeth. Am J Phys Anthropol. 2016;159(4):585-95. https://doi.org/10.1002/ajpa.22921
Kondo M, Aboshi H, Yoshikawa M, Ogata A, Murayama R, Takei M, ve ark. A newly developed age estimation method based on cpg methylation of teeth-derived DNA using real-time methylation-specific pcr. J Oral Sci. 2020;63(1):54-58. https://doi.org/10.2334/josnusd.20-0138
Márquez-Ruiz AB, González-Herrera L, Luna JDD, AV. DNA methylation levels and telomere length in human teeth: usefulness for age estimation. Legal Med. 2020;134(2):451-459. https://doi.org/10.1007/s00414-019-02242-7
Zapico SC, Gauthier Q, Antevska A, Mccord BR. Identifying methylation patterns in dental pulp aging: application to age-at-death estimation in forensic anthropology. J Mol Sci. 2021;22(7):3717. https://doi.org/10.3390/ijms22073717
Ogata A, Kondo M, Yoshikawa M, Okano M, Tsutsumi T, HA. Dental age estimation based on DNA methylation using real-time methylation-specific pcr. Forensic Sci İnt Genet. 2022;340:111445. https://doi.org/10.1016/j.forsciint.2022.111445
Woźniak A, Heidegger A, Piniewska-Róg D, Pośpiech E, Xavier C, Pisarek A, ve ark. Development of the vısage enhanced tool and statistical models for epigenetic age estimation in blood, buccal cells and bones. Aging (Albany Ny). 2021;13(5):6459-6484. https://doi.org/10.18632/aging.202783
Dias HC, Corte-Real F, Cunha E, Manco L. DNA methylation age estimation from human bone and teeth. Australian Journal Of Forensic Sciences. 2020;54(1):1-14. https://doi.org/10.1080/00450618.2020.1805011
Levy JJ, Diallo AB, Montivero MKS, Gabbita S, Salas LA, Christensen BC. Insights to aging prediction with aı based epigenetic clocks. Genomics. 2025;17(1):49-57. https://doi.org/10.1080/17501911.2024.2432854
Şaşmaz BM. Yaş tayininde kullanılan DNA metilasyon belirteçlerinin yapay oluşturulmuş olay yeri kan örneklerinde uygulanabilirliği [Yüksek lisans tezi]. İstanbul Üniversitesi-Cerrahpaşa; 2024.
Dip SA, Ma D, Zhang L. Deepage: harnessing deep neural network for epigenetic age estimation from DNA methylation data of human blood samples. Symposium Series. 2024;4(1):267-274. https://doi.org/10.1101/2024.08.12.607687;
Mathew JA, Paul G, Jacob J, Kumar J, Dubey N, Philip NS. A new robust aı/ml based model for accurate forensic age estimation using DNA methylation markers. Sci Med Pathol. 2025;1(18). https://doi.org/10.1007/s12024-025-00985-x
Cheishvili D, Carmo SD, Caraci F, Cuello MGAC, Szyf M. Epiage: a next-generation sequencing-based elovl2 epigenetic clock for biological age assessment in saliva and blood across health and disease. Ging (Albany Ny). 2025;17(1):131-160. https://doi.org/ 10.18632/aging.206188
Er S. Semen örneklerinde DNA metilasyonu ile yaş tahmini [Yüksek lisans tezi]. İstanbul Üniversitesi-Cerrahpaşa; 2022.

Bu çalışma Creative Commons Attribution 4.0 International License ile lisanslanmıştır.
Telif Hakkı (c) 2025 AYŞEN TEZEL
