Aptamer Applications in Forensic Science: Cocaine Detection and Latent Fingerprint Visualization Cases
PDF (Türkçe)

Keywords

Aptamers
forensic science applications
biosensors
cocaine detection
latent fingerprint

How to Cite

1.
Çağlayan M. Aptamer Applications in Forensic Science: Cocaine Detection and Latent Fingerprint Visualization Cases. The Bulletin of Legal Medicine. 2018;23(1):53-59. DOI: https://doi.org/10.17986/blm.2018136899

Abstract

Aptamers, also known as artificial antibodies, are capture elements that are attached to target molecules of different sizes with high affinity, and selectivity. They are successfully used in many different sensor applications over the last 30 years. Aptamers have unique advantages such as being able to be produced in a laboratory environment in contrast to antibodies produced via immunoactivity, easy to amplify and purify and to be produced in an infinite configuration. In addition to the military, environmental, food safety and medical applications, the use of aptamers in forensic sciences is inevitable. In this article, examples of aptamers and their applications in forensic sciences are given. Due to a large number of applications in the literature, latent fingerprint visualization and cocaine detection cases are given as examples of aptamer applications in forensic science.

https://doi.org/10.17986/blm.2018136899
PDF (Türkçe)

References

Almog J, Cohen Y, Azoury M, Hahn TR. Genipin--A Novel Fingerprint Reagent with Colorimetric and Fluorogenic Activity. J Forensic Sci. 2004; 49(2):255-7.

Brittany B, Hipp RE, Morgan NR, Morgan SL. Chemical Composition of Latent Fingerprints by Gas Chromatography–Mass Spectrometry. An Experiment for an Instrumental Analysis Course. J Chem Educ. 2007; 84 (4): 689-73.

Caglayan MO. Electrochemical Aptasensors for Early Cancer Diagnosis: A Review. Curr Anal Chem. 2017; 13(1): 18-30.

Cekan P, Jonsson EO, Sigurdsson ST. Folding of the Cocaine Aptamer Studied by EPR and Fluorescence Spectroscopies using the Bifunctional Spectroscopic Probe Ç. Nucleic Acids Res. 2009;37(12):3990-5.

Champad C, Lennard CI, Margot P, Stoilovic M. Fingerprints and Other Ridge Skin Impressions, CRC Press, Boca Raton 2004.

Cox JC, Ellington AD. Automated Selection of Anti-Protein Aptamers. Bioorg Med Chem. 2001; 9(10): 2525-31.

Drapel V, Becue A, Champod C, Margot P. Identification of Promising Antigenic Components in Latent Fingermark Residues. Forensic Sci Int. 2009; 184(30): 47-53.

Ellington AD, Szostak JW. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature. 1990; 346: 818–22.

Gandhi S, Suman P, Kumar A, Sharma P, Capalash N, Suri CR. Recent Advances in Immunosensor for Narcotic Drug Detection. Bioimpacts. 2015; 5(4):207-13.

Ge J, Liu Z, Zhao XS. Cocaine Detection in Blood Serum Using Aptamer Biosensor on Gold Nanoparticles and Progressive Dilution. Chin J Chem. 2012; 30: 2023–8.

Heemstra J. Aptamer-Based Lateral Flow Assay and Associated Methods, US 2014/0011193 A1, 2014, US. Pat. Office.

Herman T, Patel D. Adaptive Recognition by Nucleic Acid Aptamers. Science. 2000; 287: 820–5.

Holmes A. Detechip: Molecular Color and Fluorescent Sensory Arrays for Small Molecules, US 2010/0197516 A1, 2010, US. Pat. Office.

Hua M, Tao M, Wang P, Zhang Y, Wu Z, Chang Y, Yang Y. Label-Free Electrochemical Cocaine Aptasensor Based On A Target-Inducing Aptamer Switching Conformation. Anal Sci. 2010; 26(12):1265-70.

Jenison RD, Gill SC, Pardi A, Polisky B. High-Resolution Molecular Discrimination by RNA. Science. 1994; 263: 1425–9.

Jiang B, Wang M, Chen Y, Xie J, Xiang Y. Highly Sensitive Electrochemical Detection of Cocaine on Graphene/AuNP Modified Electrode via Catalytic Redox-Recycling Amplification. Biosens Bioelectron. 2012; 32(1):305-8.

Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. Rapid Detection of a Cocaine-Binding Aptamer Using Biological Nanopores on a Chip, J Am Chem Soc. 2011; 133 (22): 8474-7

Leggett R, Smith L, Emma E, Jickells SM, Russell A. Intelligent Fingerprinting: Simultaneous Identification of Drug Metabolites and Individuals by Using Antibody-Functionalized Nanoparticles. Angew Chem Int Ed. 2007; 46: 4100–3.

Lennard C. Fingerprint Detection: Future Prospects. Aus J Forensic Sci 2007; 39(2): 73-80.

Li Y, Qi H, Peng Y, Yang J, Zhang C. Electrogenerated Chemiluminescence Aptamer-Based Biosensor For The Determination Of Cocaine. Electrochem Commun. 2007; 9(10): 2571-5.

Liu J, Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem Int Ed. 2006; 45: 90–4.

Liu J, Mazumdar D, Lu Y. A Simple and Sensitive "Dipstick" Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures. Angew Chem Int Ed. 2006; 45(47):7955-9.

Luzi E, Minunni M, Tombelli S, Mascini M. New Trends in Affinity Sensing: Aptamers for Ligand Binding. Trends Anal Chem. 2003; 22: 810–8.

Marshall KA, Ellington AD. In Vitro Selection of RNA Aptamers. Meth Enzymol. 2000; 318:193–214.

Mckeague M, DeRosa M. Challenges and Opportunities for Small Molecule Aptamer Development. J Nucleic Acids. 2012, 748913

Neves MA, Reinstein O, Saad M, Johnson PE. Defining the Secondary Structural Requirements of a Cocaine-Binding Aptamer by a Thermodynamic and Mutation Study. Biophys Chem. 2010; 153(1):9-16.

Sharon E, Freeman R, Tel-Vered R, Willner I. Impedimetric or Ion-Sensitive Field-Effect Transistor (ISFET) Aptasensors Based on the Self-Assembly of Au Nanoparticle-Functionalized Supramolecular Aptamer Nanostructures. Electroanalysis. 2009; 21:1291–6.

Shen B, Li J, Cheng W. Electrochemical Aptasensor for Highly Sensitive Determination of Cocaine Using a Supramolecular Aptamer and Rolling Circle Amplification. Microchim Acta. 2015; 182(1): 361-7.

Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun (Camb). 2011 21; 47(19): 5602-4.

Stojanovic MN, de Prada P, Landry DW. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J Am Chem Soc. 2001; 123 (21): 4928-31.

Stojanovic MN, Landry DW. Aptamer-Based Colorimetric Probe for Cocaine. J Am Chem Soc. 2002; 124 (33): 9678-9.

Stoltenburg S, Reinemann C, Strehlitz B. SELEX—A (R) Evolutionary Method to Generate High-Affinity Nucleic Acid Ligands. Biomol Eng. 2007; 24(4): 381-403

Taghav S, Ayatollahi S, Alibolandi M, Lavaee P, Ramezani M, Abnous K. A Novel Label Free Cocaine Assay Based on Aptamer-Wrapped Single-Walled Carbon Nanotubes. Nanomed. J., 2014; 1(2):100-6.

Tombelli S, Minnuni M, Mascini M, Analytical Applications of Aptamers. Biosens Bioelectron, 2005; 20: 2424-34.

Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science.1990; 249: 505–10.

Wilson M. Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease, Cambridge University Press, Cambridge, 2005.

Wolstenholme R, Bradshaw R, Clench MR, Francese S. Study Of Latent Fingermarks by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging of Endogenous Lipids. Rapid Commun Mass Spectrom. 2009; 23: 3031–39.

Wood M, Maynard P, Spindler X, Lennard C, Roux C. Visualization of Latent Fingermarks Using an Aptamer-Based Reagent. Angew. Chem. Int. Ed. 2012; 51: 12272–74. DOI: https://doi.org/10.1002/anie.201207394

Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD et al., Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes, PNAS 2010 107 (24) 10837-10841

Yang Y, Yang D, Schluesener HJ, Zhang Z, Advances In SELEX and Application of Aptamers in the Central Nervous System. Biomol Eng. 2007; 24(6): 583-92.

You KM, Lee SH, Im A, Lee SB. Aptamers as Functional Nucleic Acids: In Vitro Selection and Biotechnological Applications. Biotechnol Bioprocess Eng. 2003; 8: 64–75.

Zhang DW, Sun CJ, Zhang FT, Xu L, Zhou YL, Zhang XX. An Electrochemical Aptasensor Based on Enzyme Linked Aptamer Assay. Biosens Bioelectron. 2012; 31(1): 363-8.

Zhang DW, Zhang FT, Cui YR, Deng QP, Krause S, Zhou YL, Zhang XX. A Label-Free Aptasensor for the Sensitive and Specific Detection of Cocaine Using Supramolecular Aptamer Fragments/Target Complex by Electrochemical Impedance Spectroscopy. Talanta. 2012; 15(92):65-71.

Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C. Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small. 2008; 4: 1196–200.

Zhang Y, Sun Z, Tang L. Aptamer Based Fluorescent Cocaine Assay Based on the Use of Graphene Oxide and Exonuclease III-Assisted Signal Amplification. Microchim Acta. 2016; 183: 2791-7.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Downloads

Download data is not yet available.