Aptamer Applications in Forensic Science: Cocaine Detection and Latent Fingerprint Visualization Cases

Authors

  • Mustafa Oğuzhan Çağlayan Cumhuriyet University , Cumhuriyet Üniversitesi Nanoteknoloji Mühendisliği Bölümü, Sivas

DOI:

https://doi.org/10.17986/blm.2018136899

Keywords:

Aptamers, forensic science applications, biosensors, cocaine detection, latent fingerprint

Abstract

Aptamers, also known as artificial antibodies, are capture elements that are attached to target molecules of different sizes with high affinity, and selectivity. They are successfully used in many different sensor applications over the last 30 years. Aptamers have unique advantages such as being able to be produced in a laboratory environment in contrast to antibodies produced via immunoactivity, easy to amplify and purify and to be produced in an infinite configuration. In addition to the military, environmental, food safety and medical applications, the use of aptamers in forensic sciences is inevitable. In this article, examples of aptamers and their applications in forensic sciences are given. Due to a large number of applications in the literature, latent fingerprint visualization and cocaine detection cases are given as examples of aptamer applications in forensic science.

Downloads

Download data is not yet available.

References

Almog J, Cohen Y, Azoury M, Hahn TR. Genipin--A Novel Fingerprint Reagent with Colorimetric and Fluorogenic Activity. J Forensic Sci. 2004; 49(2):255-7. DOI: https://doi.org/10.1520/JFS2003321

Brittany B, Hipp RE, Morgan NR, Morgan SL. Chemical Composition of Latent Fingerprints by Gas Chromatography–Mass Spectrometry. An Experiment for an Instrumental Analysis Course. J Chem Educ. 2007; 84 (4): 689-73. DOI: https://doi.org/10.1021/ed084p689

Caglayan MO. Electrochemical Aptasensors for Early Cancer Diagnosis: A Review. Curr Anal Chem. 2017; 13(1): 18-30. DOI: https://doi.org/10.2174/1573411012666160601142051

Cekan P, Jonsson EO, Sigurdsson ST. Folding of the Cocaine Aptamer Studied by EPR and Fluorescence Spectroscopies using the Bifunctional Spectroscopic Probe Ç. Nucleic Acids Res. 2009;37(12):3990-5. DOI: https://doi.org/10.1093/nar/gkp277

Champad C, Lennard CI, Margot P, Stoilovic M. Fingerprints and Other Ridge Skin Impressions, CRC Press, Boca Raton 2004. DOI: https://doi.org/10.1201/9780203485040

Cox JC, Ellington AD. Automated Selection of Anti-Protein Aptamers. Bioorg Med Chem. 2001; 9(10): 2525-31. DOI: https://doi.org/10.1016/S0968-0896(01)00028-1

Drapel V, Becue A, Champod C, Margot P. Identification of Promising Antigenic Components in Latent Fingermark Residues. Forensic Sci Int. 2009; 184(30): 47-53. DOI: https://doi.org/10.1016/j.forsciint.2008.11.017

Ellington AD, Szostak JW. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature. 1990; 346: 818–22. DOI: https://doi.org/10.1038/346818a0

Gandhi S, Suman P, Kumar A, Sharma P, Capalash N, Suri CR. Recent Advances in Immunosensor for Narcotic Drug Detection. Bioimpacts. 2015; 5(4):207-13. DOI: https://doi.org/10.15171/bi.2015.30

Ge J, Liu Z, Zhao XS. Cocaine Detection in Blood Serum Using Aptamer Biosensor on Gold Nanoparticles and Progressive Dilution. Chin J Chem. 2012; 30: 2023–8. DOI: https://doi.org/10.1002/cjoc.201200256

Heemstra J. Aptamer-Based Lateral Flow Assay and Associated Methods, US 2014/0011193 A1, 2014, US. Pat. Office.

Herman T, Patel D. Adaptive Recognition by Nucleic Acid Aptamers. Science. 2000; 287: 820–5. DOI: https://doi.org/10.1126/science.287.5454.820

Holmes A. Detechip: Molecular Color and Fluorescent Sensory Arrays for Small Molecules, US 2010/0197516 A1, 2010, US. Pat. Office.

Hua M, Tao M, Wang P, Zhang Y, Wu Z, Chang Y, Yang Y. Label-Free Electrochemical Cocaine Aptasensor Based On A Target-Inducing Aptamer Switching Conformation. Anal Sci. 2010; 26(12):1265-70. DOI: https://doi.org/10.2116/analsci.26.1265

Jenison RD, Gill SC, Pardi A, Polisky B. High-Resolution Molecular Discrimination by RNA. Science. 1994; 263: 1425–9. DOI: https://doi.org/10.1126/science.7510417

Jiang B, Wang M, Chen Y, Xie J, Xiang Y. Highly Sensitive Electrochemical Detection of Cocaine on Graphene/AuNP Modified Electrode via Catalytic Redox-Recycling Amplification. Biosens Bioelectron. 2012; 32(1):305-8. DOI: https://doi.org/10.1016/j.bios.2011.12.010

Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. Rapid Detection of a Cocaine-Binding Aptamer Using Biological Nanopores on a Chip, J Am Chem Soc. 2011; 133 (22): 8474-7 DOI: https://doi.org/10.1021/ja2026085

Leggett R, Smith L, Emma E, Jickells SM, Russell A. Intelligent Fingerprinting: Simultaneous Identification of Drug Metabolites and Individuals by Using Antibody-Functionalized Nanoparticles. Angew Chem Int Ed. 2007; 46: 4100–3. DOI: https://doi.org/10.1002/anie.200700217

Lennard C. Fingerprint Detection: Future Prospects. Aus J Forensic Sci 2007; 39(2): 73-80. DOI: https://doi.org/10.1080/00450610701650039

Li Y, Qi H, Peng Y, Yang J, Zhang C. Electrogenerated Chemiluminescence Aptamer-Based Biosensor For The Determination Of Cocaine. Electrochem Commun. 2007; 9(10): 2571-5. DOI: https://doi.org/10.1016/j.elecom.2007.07.038

Liu J, Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem Int Ed. 2006; 45: 90–4. DOI: https://doi.org/10.1002/anie.200502589

Liu J, Mazumdar D, Lu Y. A Simple and Sensitive "Dipstick" Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures. Angew Chem Int Ed. 2006; 45(47):7955-9. DOI: https://doi.org/10.1002/anie.200603106

Luzi E, Minunni M, Tombelli S, Mascini M. New Trends in Affinity Sensing: Aptamers for Ligand Binding. Trends Anal Chem. 2003; 22: 810–8. DOI: https://doi.org/10.1016/S0165-9936(03)01208-1

Marshall KA, Ellington AD. In Vitro Selection of RNA Aptamers. Meth Enzymol. 2000; 318:193–214. DOI: https://doi.org/10.1016/S0076-6879(00)18053-X

Mckeague M, DeRosa M. Challenges and Opportunities for Small Molecule Aptamer Development. J Nucleic Acids. 2012, 748913 DOI: https://doi.org/10.1155/2012/748913

Neves MA, Reinstein O, Saad M, Johnson PE. Defining the Secondary Structural Requirements of a Cocaine-Binding Aptamer by a Thermodynamic and Mutation Study. Biophys Chem. 2010; 153(1):9-16. DOI: https://doi.org/10.1016/j.bpc.2010.09.009

Sharon E, Freeman R, Tel-Vered R, Willner I. Impedimetric or Ion-Sensitive Field-Effect Transistor (ISFET) Aptasensors Based on the Self-Assembly of Au Nanoparticle-Functionalized Supramolecular Aptamer Nanostructures. Electroanalysis. 2009; 21:1291–6. DOI: https://doi.org/10.1002/elan.200804565

Shen B, Li J, Cheng W. Electrochemical Aptasensor for Highly Sensitive Determination of Cocaine Using a Supramolecular Aptamer and Rolling Circle Amplification. Microchim Acta. 2015; 182(1): 361-7. DOI: https://doi.org/10.1007/s00604-014-1333-3

Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun (Camb). 2011 21; 47(19): 5602-4. DOI: https://doi.org/10.1039/C0CC05748G

Stojanovic MN, de Prada P, Landry DW. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J Am Chem Soc. 2001; 123 (21): 4928-31. DOI: https://doi.org/10.1021/ja0038171

Stojanovic MN, Landry DW. Aptamer-Based Colorimetric Probe for Cocaine. J Am Chem Soc. 2002; 124 (33): 9678-9. DOI: https://doi.org/10.1021/ja0259483

Stoltenburg S, Reinemann C, Strehlitz B. SELEX—A (R) Evolutionary Method to Generate High-Affinity Nucleic Acid Ligands. Biomol Eng. 2007; 24(4): 381-403 DOI: https://doi.org/10.1016/j.bioeng.2007.06.001

Taghav S, Ayatollahi S, Alibolandi M, Lavaee P, Ramezani M, Abnous K. A Novel Label Free Cocaine Assay Based on Aptamer-Wrapped Single-Walled Carbon Nanotubes. Nanomed. J., 2014; 1(2):100-6.

Tombelli S, Minnuni M, Mascini M, Analytical Applications of Aptamers. Biosens Bioelectron, 2005; 20: 2424-34. DOI: https://doi.org/10.1016/j.bios.2004.11.006

Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science.1990; 249: 505–10. DOI: https://doi.org/10.1126/science.2200121

Wilson M. Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease, Cambridge University Press, Cambridge, 2005. DOI: https://doi.org/10.1017/CBO9780511735080

Wolstenholme R, Bradshaw R, Clench MR, Francese S. Study Of Latent Fingermarks by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging of Endogenous Lipids. Rapid Commun Mass Spectrom. 2009; 23: 3031–39. DOI: https://doi.org/10.1002/rcm.4218

Wood M, Maynard P, Spindler X, Lennard C, Roux C. Visualization of Latent Fingermarks Using an Aptamer-Based Reagent. Angew. Chem. Int. Ed. 2012; 51: 12272–74. https://doi.org/10.1002/anie.201207394 DOI: https://doi.org/10.1002/anie.201207394

Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD et al., Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes, PNAS 2010 107 (24) 10837-10841 DOI: https://doi.org/10.1073/pnas.1005632107

Yang Y, Yang D, Schluesener HJ, Zhang Z, Advances In SELEX and Application of Aptamers in the Central Nervous System. Biomol Eng. 2007; 24(6): 583-92. DOI: https://doi.org/10.1016/j.bioeng.2007.06.003

You KM, Lee SH, Im A, Lee SB. Aptamers as Functional Nucleic Acids: In Vitro Selection and Biotechnological Applications. Biotechnol Bioprocess Eng. 2003; 8: 64–75. DOI: https://doi.org/10.1007/BF02940259

Zhang DW, Sun CJ, Zhang FT, Xu L, Zhou YL, Zhang XX. An Electrochemical Aptasensor Based on Enzyme Linked Aptamer Assay. Biosens Bioelectron. 2012; 31(1): 363-8. DOI: https://doi.org/10.1016/j.bios.2011.10.046

Zhang DW, Zhang FT, Cui YR, Deng QP, Krause S, Zhou YL, Zhang XX. A Label-Free Aptasensor for the Sensitive and Specific Detection of Cocaine Using Supramolecular Aptamer Fragments/Target Complex by Electrochemical Impedance Spectroscopy. Talanta. 2012; 15(92):65-71. DOI: https://doi.org/10.1016/j.talanta.2012.01.049

Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C. Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small. 2008; 4: 1196–200. DOI: https://doi.org/10.1002/smll.200800057

Zhang Y, Sun Z, Tang L. Aptamer Based Fluorescent Cocaine Assay Based on the Use of Graphene Oxide and Exonuclease III-Assisted Signal Amplification. Microchim Acta. 2016; 183: 2791-7. DOI: https://doi.org/10.1007/s00604-016-1923-3

Downloads

Published

2018-04-05

Issue

Section

Review

How to Cite

1.
Çağlayan MO. Aptamer Applications in Forensic Science: Cocaine Detection and Latent Fingerprint Visualization Cases. Bull Leg Med [Internet]. 2018 Apr. 5 [cited 2025 Sep. 6];23(1):53-9. Available from: https://www.adlitipbulteni.com/index.php/atb/article/view/1116