Aptamer Applications in Forensic Science: Cocaine Detection and Latent Fingerprint Visualization Cases
DOI:
https://doi.org/10.17986/blm.2018136899Keywords:
Aptamers, forensic science applications, biosensors, cocaine detection, latent fingerprintAbstract
Aptamers, also known as artificial antibodies, are capture elements that are attached to target molecules of different sizes with high affinity, and selectivity. They are successfully used in many different sensor applications over the last 30 years. Aptamers have unique advantages such as being able to be produced in a laboratory environment in contrast to antibodies produced via immunoactivity, easy to amplify and purify and to be produced in an infinite configuration. In addition to the military, environmental, food safety and medical applications, the use of aptamers in forensic sciences is inevitable. In this article, examples of aptamers and their applications in forensic sciences are given. Due to a large number of applications in the literature, latent fingerprint visualization and cocaine detection cases are given as examples of aptamer applications in forensic science.
Downloads
References
Almog J, Cohen Y, Azoury M, Hahn TR. Genipin--A Novel Fingerprint Reagent with Colorimetric and Fluorogenic Activity. J Forensic Sci. 2004; 49(2):255-7. DOI: https://doi.org/10.1520/JFS2003321
Brittany B, Hipp RE, Morgan NR, Morgan SL. Chemical Composition of Latent Fingerprints by Gas Chromatography–Mass Spectrometry. An Experiment for an Instrumental Analysis Course. J Chem Educ. 2007; 84 (4): 689-73. DOI: https://doi.org/10.1021/ed084p689
Caglayan MO. Electrochemical Aptasensors for Early Cancer Diagnosis: A Review. Curr Anal Chem. 2017; 13(1): 18-30. DOI: https://doi.org/10.2174/1573411012666160601142051
Cekan P, Jonsson EO, Sigurdsson ST. Folding of the Cocaine Aptamer Studied by EPR and Fluorescence Spectroscopies using the Bifunctional Spectroscopic Probe Ç. Nucleic Acids Res. 2009;37(12):3990-5. DOI: https://doi.org/10.1093/nar/gkp277
Champad C, Lennard CI, Margot P, Stoilovic M. Fingerprints and Other Ridge Skin Impressions, CRC Press, Boca Raton 2004. DOI: https://doi.org/10.1201/9780203485040
Cox JC, Ellington AD. Automated Selection of Anti-Protein Aptamers. Bioorg Med Chem. 2001; 9(10): 2525-31. DOI: https://doi.org/10.1016/S0968-0896(01)00028-1
Drapel V, Becue A, Champod C, Margot P. Identification of Promising Antigenic Components in Latent Fingermark Residues. Forensic Sci Int. 2009; 184(30): 47-53. DOI: https://doi.org/10.1016/j.forsciint.2008.11.017
Ellington AD, Szostak JW. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature. 1990; 346: 818–22. DOI: https://doi.org/10.1038/346818a0
Gandhi S, Suman P, Kumar A, Sharma P, Capalash N, Suri CR. Recent Advances in Immunosensor for Narcotic Drug Detection. Bioimpacts. 2015; 5(4):207-13. DOI: https://doi.org/10.15171/bi.2015.30
Ge J, Liu Z, Zhao XS. Cocaine Detection in Blood Serum Using Aptamer Biosensor on Gold Nanoparticles and Progressive Dilution. Chin J Chem. 2012; 30: 2023–8. DOI: https://doi.org/10.1002/cjoc.201200256
Heemstra J. Aptamer-Based Lateral Flow Assay and Associated Methods, US 2014/0011193 A1, 2014, US. Pat. Office.
Herman T, Patel D. Adaptive Recognition by Nucleic Acid Aptamers. Science. 2000; 287: 820–5. DOI: https://doi.org/10.1126/science.287.5454.820
Holmes A. Detechip: Molecular Color and Fluorescent Sensory Arrays for Small Molecules, US 2010/0197516 A1, 2010, US. Pat. Office.
Hua M, Tao M, Wang P, Zhang Y, Wu Z, Chang Y, Yang Y. Label-Free Electrochemical Cocaine Aptasensor Based On A Target-Inducing Aptamer Switching Conformation. Anal Sci. 2010; 26(12):1265-70. DOI: https://doi.org/10.2116/analsci.26.1265
Jenison RD, Gill SC, Pardi A, Polisky B. High-Resolution Molecular Discrimination by RNA. Science. 1994; 263: 1425–9. DOI: https://doi.org/10.1126/science.7510417
Jiang B, Wang M, Chen Y, Xie J, Xiang Y. Highly Sensitive Electrochemical Detection of Cocaine on Graphene/AuNP Modified Electrode via Catalytic Redox-Recycling Amplification. Biosens Bioelectron. 2012; 32(1):305-8. DOI: https://doi.org/10.1016/j.bios.2011.12.010
Kawano R, Osaki T, Sasaki H, Takinoue M, Yoshizawa S, Takeuchi S. Rapid Detection of a Cocaine-Binding Aptamer Using Biological Nanopores on a Chip, J Am Chem Soc. 2011; 133 (22): 8474-7 DOI: https://doi.org/10.1021/ja2026085
Leggett R, Smith L, Emma E, Jickells SM, Russell A. Intelligent Fingerprinting: Simultaneous Identification of Drug Metabolites and Individuals by Using Antibody-Functionalized Nanoparticles. Angew Chem Int Ed. 2007; 46: 4100–3. DOI: https://doi.org/10.1002/anie.200700217
Lennard C. Fingerprint Detection: Future Prospects. Aus J Forensic Sci 2007; 39(2): 73-80. DOI: https://doi.org/10.1080/00450610701650039
Li Y, Qi H, Peng Y, Yang J, Zhang C. Electrogenerated Chemiluminescence Aptamer-Based Biosensor For The Determination Of Cocaine. Electrochem Commun. 2007; 9(10): 2571-5. DOI: https://doi.org/10.1016/j.elecom.2007.07.038
Liu J, Lu Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem Int Ed. 2006; 45: 90–4. DOI: https://doi.org/10.1002/anie.200502589
Liu J, Mazumdar D, Lu Y. A Simple and Sensitive "Dipstick" Test in Serum Based on Lateral Flow Separation of Aptamer-Linked Nanostructures. Angew Chem Int Ed. 2006; 45(47):7955-9. DOI: https://doi.org/10.1002/anie.200603106
Luzi E, Minunni M, Tombelli S, Mascini M. New Trends in Affinity Sensing: Aptamers for Ligand Binding. Trends Anal Chem. 2003; 22: 810–8. DOI: https://doi.org/10.1016/S0165-9936(03)01208-1
Marshall KA, Ellington AD. In Vitro Selection of RNA Aptamers. Meth Enzymol. 2000; 318:193–214. DOI: https://doi.org/10.1016/S0076-6879(00)18053-X
Mckeague M, DeRosa M. Challenges and Opportunities for Small Molecule Aptamer Development. J Nucleic Acids. 2012, 748913 DOI: https://doi.org/10.1155/2012/748913
Neves MA, Reinstein O, Saad M, Johnson PE. Defining the Secondary Structural Requirements of a Cocaine-Binding Aptamer by a Thermodynamic and Mutation Study. Biophys Chem. 2010; 153(1):9-16. DOI: https://doi.org/10.1016/j.bpc.2010.09.009
Sharon E, Freeman R, Tel-Vered R, Willner I. Impedimetric or Ion-Sensitive Field-Effect Transistor (ISFET) Aptasensors Based on the Self-Assembly of Au Nanoparticle-Functionalized Supramolecular Aptamer Nanostructures. Electroanalysis. 2009; 21:1291–6. DOI: https://doi.org/10.1002/elan.200804565
Shen B, Li J, Cheng W. Electrochemical Aptasensor for Highly Sensitive Determination of Cocaine Using a Supramolecular Aptamer and Rolling Circle Amplification. Microchim Acta. 2015; 182(1): 361-7. DOI: https://doi.org/10.1007/s00604-014-1333-3
Spindler X, Hofstetter O, McDonagh AM, Roux C, Lennard C. Enhancement of latent fingermarks on non-porous surfaces using anti-L-amino acid antibodies conjugated to gold nanoparticles. Chem Commun (Camb). 2011 21; 47(19): 5602-4. DOI: https://doi.org/10.1039/C0CC05748G
Stojanovic MN, de Prada P, Landry DW. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J Am Chem Soc. 2001; 123 (21): 4928-31. DOI: https://doi.org/10.1021/ja0038171
Stojanovic MN, Landry DW. Aptamer-Based Colorimetric Probe for Cocaine. J Am Chem Soc. 2002; 124 (33): 9678-9. DOI: https://doi.org/10.1021/ja0259483
Stoltenburg S, Reinemann C, Strehlitz B. SELEX—A (R) Evolutionary Method to Generate High-Affinity Nucleic Acid Ligands. Biomol Eng. 2007; 24(4): 381-403 DOI: https://doi.org/10.1016/j.bioeng.2007.06.001
Taghav S, Ayatollahi S, Alibolandi M, Lavaee P, Ramezani M, Abnous K. A Novel Label Free Cocaine Assay Based on Aptamer-Wrapped Single-Walled Carbon Nanotubes. Nanomed. J., 2014; 1(2):100-6.
Tombelli S, Minnuni M, Mascini M, Analytical Applications of Aptamers. Biosens Bioelectron, 2005; 20: 2424-34. DOI: https://doi.org/10.1016/j.bios.2004.11.006
Tuerk C, Gold L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science.1990; 249: 505–10. DOI: https://doi.org/10.1126/science.2200121
Wilson M. Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease, Cambridge University Press, Cambridge, 2005. DOI: https://doi.org/10.1017/CBO9780511735080
Wolstenholme R, Bradshaw R, Clench MR, Francese S. Study Of Latent Fingermarks by Matrix-Assisted Laser Desorption/Ionisation Mass Spectrometry Imaging of Endogenous Lipids. Rapid Commun Mass Spectrom. 2009; 23: 3031–39. DOI: https://doi.org/10.1002/rcm.4218
Wood M, Maynard P, Spindler X, Lennard C, Roux C. Visualization of Latent Fingermarks Using an Aptamer-Based Reagent. Angew. Chem. Int. Ed. 2012; 51: 12272–74. https://doi.org/10.1002/anie.201207394 DOI: https://doi.org/10.1002/anie.201207394
Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD et al., Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes, PNAS 2010 107 (24) 10837-10841 DOI: https://doi.org/10.1073/pnas.1005632107
Yang Y, Yang D, Schluesener HJ, Zhang Z, Advances In SELEX and Application of Aptamers in the Central Nervous System. Biomol Eng. 2007; 24(6): 583-92. DOI: https://doi.org/10.1016/j.bioeng.2007.06.003
You KM, Lee SH, Im A, Lee SB. Aptamers as Functional Nucleic Acids: In Vitro Selection and Biotechnological Applications. Biotechnol Bioprocess Eng. 2003; 8: 64–75. DOI: https://doi.org/10.1007/BF02940259
Zhang DW, Sun CJ, Zhang FT, Xu L, Zhou YL, Zhang XX. An Electrochemical Aptasensor Based on Enzyme Linked Aptamer Assay. Biosens Bioelectron. 2012; 31(1): 363-8. DOI: https://doi.org/10.1016/j.bios.2011.10.046
Zhang DW, Zhang FT, Cui YR, Deng QP, Krause S, Zhou YL, Zhang XX. A Label-Free Aptasensor for the Sensitive and Specific Detection of Cocaine Using Supramolecular Aptamer Fragments/Target Complex by Electrochemical Impedance Spectroscopy. Talanta. 2012; 15(92):65-71. DOI: https://doi.org/10.1016/j.talanta.2012.01.049
Zhang J, Wang L, Pan D, Song S, Boey FYC, Zhang H, Fan C. Visual Cocaine Detection with Gold Nanoparticles and Rationally Engineered Aptamer Structures. Small. 2008; 4: 1196–200. DOI: https://doi.org/10.1002/smll.200800057
Zhang Y, Sun Z, Tang L. Aptamer Based Fluorescent Cocaine Assay Based on the Use of Graphene Oxide and Exonuclease III-Assisted Signal Amplification. Microchim Acta. 2016; 183: 2791-7. DOI: https://doi.org/10.1007/s00604-016-1923-3

Downloads
Published
Issue
Section
License
Copyright (c) 2018 Mustafa Oğuzhan Çağlayan

This work is licensed under a Creative Commons Attribution 4.0 International License.
The Journal and content of this website is licensed under the terms of the Creative Commons Attribution (CC BY) License. The Creative Commons Attribution License (CC BY) allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC BY license permits commercial and non-commercial re-use of an open access article, as long as the author is properly attributed.